Mechanisms involved in the protective effect of estradiol-17β on lipid peroxidation and DNA damage.

نویسندگان

  • Stacey Ayres
  • William Abplanalp
  • James H Liu
  • M T Ravi Subbiah
چکیده

Previous studies from our laboratory have shown that estrogens can protect against lipoprotein peroxidation and DNA damage. In this study, the mechanism of estradiol-17β (E2) action was investigated by comparing E2 with selective scavengers of reactive oxygen species (ROS) in terms of inhibition of 1) human low-density lipoprotein (LDL) peroxidation (measured by the diene conjugation method) and 2) DNA damage (measured by the formation of strand breaks in supercoiled OX-174 RFI DNA). In addition, the direct effect of E2 on the generation of individual ROS was also measured. By use of ROS scavengers, it was determined that lipoprotein peroxidation was predominantly due to superoxide (39%), with some contributions from hydrogen peroxide (23%) and peroxy (38%) radicals. E2 was a more effective inhibitor of peroxidation than all the ROS scavengers combined. In DNA damage, scavengers of hydrogen peroxide, hydroxyl, and superoxide radical offered significant protection (49-65%). E2 alone offered a similar degree of protection, and no additional effect was evident when it was combined with ROS scavengers. E2caused a significant reduction (37%) in the production of superoxide radical by bovine heart endothelial cells in culture but had no effect on the formation of either hydrogen peroxide or hydroxyl radicals. These studies show that 1) the protection offered by E2 in terms of lipid peroxidation could be due to its ability to inhibit generation of superoxide radical and prevent further chain propagation, and 2) in DNA damage protection, E2 mainly appears to inhibit chain propagation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effect of rutin on oxidative DNA damage in PC12 neurons cultured in nutrients deprivation condition

Objective(s): Rutin is a flavonoid with potent antioxidant property, which exhibited cytoprotective effects in several models of neuronal injury. This work aimed to examine whether rutin can protect neurons against oxidative DNA damage caused by serum/glucose deprivation (SGD) as an in vitro model of neurodegeneration and ischemia. Materials and Metho...

متن کامل

The Protective Effect of Antioxidant and Anti-inflammatory Nanoparticles in Renal Ischemia-Reperfusion Damage

Background& objectives: Renal ischemia-reperfusion (IR) damage occurs during renal transplantation in end-stage renal disease (ESRD) patients which activate immune responses. Inflammatory responses by increased levels of cytokines can lead to acute kidney injury (AKI) that contributes to the loss of renal grafts and graft dysfunction. The purpose of this study was to review the therapeutic effe...

متن کامل

Is the pain modulatory action of 17β-estradiol in locus coeruleus of male rats is mediated by GABAA receptors?

Introduction: Estradiol is a neuroactive steroid, which is found in several brain areas such as locus coeruleus (LC). Estradiol modulates nociception by binding to its receptors and also by allosteric interaction with other membranebound receptors like glutamate and GABAA receptors. LC is involved in noradrenergic descending pain modulation. Methods: In order to study the effect of 17β-estra...

متن کامل

Protective effect of pomegranate seed oil against H2O2 -induced oxidative stress in cardiomyocytes

Objective: It has been well documented that oxidative stress is involved in the pathogenesis of cardiac diseases. Previous studies have shown that pomegranate seed oil (PSO) has antioxidant properties. This study was designed to investigate probable protective effects of PSO against hydrogen peroxide (H2O2)-induced damage in H9c2 cardiomyocytes.Materials and Methods: The cells were pretreated 2...

متن کامل

Crocin Prevents Sub-Cellular Organelle Damage, Proteolysis and Apoptosis in Rat Hepatocytes: A Justification for Its Hepatoprotection

Crocin, the main constituent of saffron (Crocus sativus L.), is a natural carotenoid which is known for its antioxidant activity. Liver as the organ that metabolizes many chemicals is one of the first position that is at risk of environmental pollutants. It is clear that compounds that exhibit antioxidant properties, scavenging of free radicals and inhibition of lipid peroxidation are expected ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • American journal of physiology. Endocrinology and metabolism

دوره 274 6  شماره 

صفحات  -

تاریخ انتشار 1998